Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
2.
J Agric Food Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659344

RESUMO

Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.

3.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
4.
J Agric Food Chem ; 72(13): 7179-7186, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520358

RESUMO

Lacto-N-neotetraose (LNnT), a prominent neutral human milk oligosaccharide (HMO), serves as a pivotal structural element in complex HMO biosynthesis. Given its promising health effects for infants, the biosynthesis of LNnT is garnering greater interest. Using a previously engineered strain as a chassis, a highly effective LNnT producer was constructed. First, LNnT synthesis in Escherichia coli MG1655 was achieved by introducing ß1,3-N-acetylglucosaminyltransferase LgtA and ß1,4-galactosyltransferase CpsIaJ, coupled with the optimization of enzyme expression levels using various promoters. Subsequently, ugd underwent disruption, and the galE gene was enhanced by replacing its promoter with PJ23119 or Ptac. Then, a lux-type quorum sensing (QS) system was applied to achieve varied metabolic regulation. Additionally, systematic optimization of the QS promoters was conducted to further improve the LNnT titer in the shake flask. Finally, the extracellular titer of LNnT was 20.33 g/L, accompanied by a productivity of 0.41 g/L/h.


Assuntos
Escherichia coli , Percepção de Quorum , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Leite Humano/química
5.
Theor Appl Genet ; 137(3): 67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441674

RESUMO

KEY MESSAGE: A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Triticum/genética , Mapeamento Cromossômico , Alelos , Embaralhamento de DNA
6.
J Agric Food Chem ; 72(11): 5860-5866, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452259

RESUMO

Lacto-N-biose I (LNB), termed a Type 1 disaccharide, is an important building block of human milk oligosaccharides. It shows promising prebiotic activity by stimulating the proliferation of many gut-associated bifidobacteria and thus displays good potential in infant foods or supplements. Enzymatic and microbial approaches to LNB synthesis have been studied, almost all of which involve glycosylation of LNB phosphorylase as the final step. Herein, we report a new and easier microbial LNB synthesis strategy through the route "lactose → lacto-N-triose II (LNTri II) → lacto-N-tetraose (LNT) → LNB". A previously constructed LNT-producing Escherichia coli BL21(DE3) strain was engineered for LNB biosynthesis by introducing Bifidobacterium bifidum LnbB. LNB was efficiently produced, accompanied by lactose regeneration. Genomic integration of key pathway genes related to LNTri II and LNT synthesis was performed to enhance LNB titers. The final engineered strain produced 3.54 and 26.88 g/L LNB by shake-flask and fed-batch cultivation, respectively.


Assuntos
Acetilglucosamina/análogos & derivados , Escherichia coli , Leite Humano , Lactente , Humanos , Leite Humano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
7.
J Agric Food Chem ; 72(8): 4317-4324, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364314

RESUMO

Lacto-N-fucopentaose I (LNFP I) has recently been approved as generally recognized as safe, demonstrating its great commercial potential in the food industry. Microbial synthesis through metabolic engineering strategies is an effective approach for large-scale production of LNFP I. Biosynthesis of LNFP I requires consideration of two key points: high titer with low byproduct 2'-fucosyllactose (2'-FL) generation and high purity with low lacto-N-triose II (LNTri II) and lacto-N-tetraose (LNT) residues. Herein, α1,2-fucosyltransferase from Thermoanaerobacterium sp. RBIITD was screened from 16 selected LNFP I-producing glycosyltransferase candidates, showing the highest in vivo LNFP I productivity. Chromosomal integration of wbgO enhanced the LNFP I production by improving the precursor conversion from LNTri II to LNT. The best engineered strain produced 4.42 and 35.1 g/L LNFP I in shake-flask and fed-batch cultivation, respectively. The residual LNTri II and LNT were eliminated by further cultivation with a recombinant strain coexpressing Bifidobacterium bifidum ß-N-acetylhexosaminidase and lacto-N-biosidase. A strategy for LNFP I biosynthesis with high yield and purity was finally realized, providing support for its practical application in large-scale production.


Assuntos
Glicosiltransferases , Leite Humano , Trissacarídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Leite Humano/química , Oligossacarídeos/química
8.
JMIR Form Res ; 8: e53654, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363597

RESUMO

BACKGROUND: The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in China presents a significant public health concern. Traditional ultrasound, commonly used for fatty liver screening, often lacks the ability to accurately quantify steatosis, leading to insufficient follow-up for patients with moderate-to-severe steatosis. Transient elastography (TE) provides a more quantitative diagnosis of steatosis and fibrosis, closely aligning with biopsy results. Moreover, machine learning (ML) technology holds promise for developing more precise diagnostic models for NAFLD using a variety of laboratory indicators. OBJECTIVE: This study aims to develop a novel ML-based diagnostic model leveraging TE results for staging hepatic steatosis. The objective was to streamline the model's input features, creating a cost-effective and user-friendly tool to distinguish patients with NAFLD requiring follow-up. This innovative approach merges TE and ML to enhance diagnostic accuracy and efficiency in NAFLD assessment. METHODS: The study involved a comprehensive analysis of health examination records from Suzhou Municipal Hospital, spanning from March to May 2023. Patient data and questionnaire responses were meticulously inputted into Microsoft Excel 2019, followed by thorough data cleaning and model development using Python 3.7, with libraries scikit-learn and numpy to ensure data accuracy. A cohort comprising 978 residents with complete medical records and TE results was included for analysis. Various classification models, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost), were constructed and evaluated based on the area under the receiver operating characteristic curve (AUROC). RESULTS: Among the 916 patients included in the study, 273 were diagnosed with moderate-to-severe NAFLD. The concordance rate between traditional ultrasound and TE for detecting moderate-to-severe NAFLD was 84.6% (231/273). The AUROC values for the RF, LightGBM, XGBoost, SVM, KNN, and LR models were 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively. These models achieved accuracy rates of 84%, 81%, 78%, 81%, 76%, and 77%, respectively. Notably, the RF model exhibited the best performance. A simplified RF model was developed with an AUROC of 0.88, featuring 62% sensitivity and 90% specificity. This simplified model used 6 key features: waist circumference, BMI, fasting plasma glucose, uric acid, total bilirubin, and high-sensitivity C-reactive protein. This approach offers a cost-effective and user-friendly tool while streamlining feature acquisition for training purposes. CONCLUSIONS: The study introduces a groundbreaking, cost-effective ML algorithm that leverages health examination data for identifying moderate-to-severe NAFLD. This model has the potential to significantly impact public health by enabling targeted investigations and interventions for NAFLD. By integrating TE and ML technologies, the study showcases innovative approaches to advancing NAFLD diagnostics.

9.
ACS Omega ; 9(1): 422-436, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222568

RESUMO

Injecting water with chemicals to generate emulsions in the reservoir is a promising method for enhancing heavy oil recovery because oil-in-water (O/W) emulsions significantly reduce oil viscosity. To enhance heavy oil recovery efficiency, we developed new star-like branched AM-SSS copolymers (SB-PAMs) with reduction in the viscosity of the heavy oil emulsion, which was synthesized by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The core structure of the branched polymer was RAFT polymerization of acrylamide (AM) and N,N'-methylene bis-acrylamide (BisAM), in the presence of 3-(((benzylthio)carbonothioyl)thio)propanoic acid as a chain transfer agent, followed by chain extension with AM and SSS. The core structures were achieved by incorporation of total monomer ratios [BisAM]/[AM] of 1:11. The expansion of the core structures by copolymerization of AM and SSS resulted in star-like branched polymer SB-PAM-co-SSS with apparent molecular weights ranging from 240 to 2381 kDa. 1H-nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) confirmed the synthesized polymer structure. The molecular weight was determined by gel permeation chromatography (GPC). The polydispersity coefficient was between 1 and 7, which has a broad molecular weight distribution. The polymer dissolves only 0.75 h in deionized water, faster than conventional polyacrylamide. At 50 °C, the viscosity of the 1000 mg/L SB-polymer solution can reach up to 45 mPa·s. First, heavy oil viscosity reduction by 800 mg/L SB polymer can reach 91.7%, at a water dehydration rate of 90.4%; second, with 0.6 PV injection, 800 mg/L SB polymer improved oil recovery up to 23.66% after water flooding; and third, SB-polymer-assisted hot water flooding shows that heavy oil recovery improved by 19.46% at 110 °C with 0.6 pore volume (PV) SB-polymer injection. This novel branched chain polymer with heavy oil emulsion capability will shed light on high-temperature polymer flooding and the development of a new candidate structure for heavy oil viscosity reduction.

10.
Mol Biotechnol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082189

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent histology type of lung cancer worldwide, accounting for 18% of total cancer-related deaths estimated by GLOBOCAN in 2020. CircRNAs have emerged as potent regulators of NSCLC development. CircRANGAP1 (hsa_circ_0001235/hsa_circ_0063526) is a potential biomarker for NSCLC identified by microarray dataset analysis. Here, we investigated the biological functions of circRANGAP1 in NSCLC development and elucidated the associated competing endogenous RNA (ceRNA) mechanisms. We found that circRANGAP1 expression was upregulated in NSCLC tissues and cells, which was inversely correlated with carcinogenesis and poor clinical outcome of NSCLC patients. CircRANGAP1 knockdown inhibited NSCLC migration by regulating miR-512-5p/SOD2 axis. In conclusion, circRANGAP1 facilitated NSCLC tumorigenesis and development by sponging miR-512-5p to upregulate SOD2 expression. Suppression of circRANGAP1 expression by si-circRANGAP1 treatment could be a strategy to inhibit NSCLC development and metastasis.

11.
Adv Mater ; : e2308098, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777858

RESUMO

Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.

12.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
13.
J Agric Food Chem ; 71(33): 12511-12518, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555443

RESUMO

Lacto-N-tetraose (LNT) is an important neutral human milk oligosaccharide (HMO) and acts as a significant core structure for complex HMO biosynthesis. We previously achieved high-yield LNT biosynthesis (57.5 g/L) using fed-batch fermentation; however, residual lacto-N-triose II (LNTri II) was also found (21.58 g/L). Here, we re-engineered an efficient LNT-producing Escherichia coli with low LNTri II accumulation using genetically stable LNTri II-producing strains with a genomic insertion of lgtA (encoding ß1,3-N-acetylglucosaminyltransferase). Comparable and low titers of LNT (3.73-4.61 g/L) and LNTri II (0.33-0.63 g/L), respectively, were obtained by introducing ß1,3-galactosyltransferase. To reduce residual LNTri II, the E. coli transporter gene setA was disrupted, obviously reducing the accumulation of LNTri II and LNT. Next, the gene encoding ß-N-acetylhexosaminidase (BbhI) was introduced into LNT-producing strains or E. coli BL21(DE3) for single- or mixed-strain cultivation, respectively. Finally, LNT was obtained (30.13 g/L) in a cocultivation system of mixed engineered strains without undesired LNTri II.


Assuntos
Escherichia coli , Oligossacarídeos , Humanos , Escherichia coli/genética , Oligossacarídeos/química , Trissacarídeos/análise , Leite Humano/química
14.
Front Public Health ; 11: 1152151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139399

RESUMO

Background: This study aimed to determine sleep patterns and the prevalence and association factors of sleep disorders in a regionally representative sample in Mo Jiang, China. Methods: A total of 2,346 (participation rate 93.5%) Grade 7 students (aged 13-14 years) from 10 middle schools, including 1,213 (51.7%) boys and 1,133 (48.3%) girls, participated in the study. All the participants were invited to complete questionnaires that acquired information on sleep patterns, academic performance, academic stress, and sociodemographic factors. Sleep disorders were assessed using the Chinese version of the Children's Sleep Habits Questionnaire. Logistic regression models were used to investigate factors associated with sleep disorders. Results: The prevalence of sleep disorders among rural adolescents was 76.4%, which is higher than that among urban adolescents. Compared with previous findings in urban areas, our results indicate that sleep loss is much more severe in rural adolescents. Sleep disorders were positively associated with factors, such as watching TV [odds ratio (OR) = 1.22, p = 0.001], academic performance (OR = 1.80, p < 0.001), and academic stress (OR = 1.38, p = 0.04). In addition, girls were more likely to suffer from sleep disorders than boys (OR = 1.36, p = 0.01). Conclusion: Insufficient sleep and sleep disorders have become common health problems in rural Chinese adolescents.


Assuntos
Privação do Sono , Transtornos do Sono-Vigília , Masculino , Criança , Feminino , Humanos , Adolescente , Privação do Sono/epidemiologia , Sono , Estudantes , Transtornos do Sono-Vigília/epidemiologia , China/epidemiologia
15.
ACS Appl Mater Interfaces ; 15(18): 21804-21818, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129251

RESUMO

Reactive oxygen species-mediated therapeutic strategies, including chemodynamic therapy (CDT) and photodynamic therapy (PDT), have exhibited translational promise for effective cancer management. However, monotherapy often ends up with the incomplete elimination of the entire tumor due to inherent limitations. Herein, we report a core-shell-structured Pd1.7Bi@CeO2-ICG (PBCI) nanoplatform constructed by a facile and effective strategy for synergistic CDT, PDT, and photothermal therapy. In the system, both Pd1.7Bi and CeO2 constituents exhibit peroxidase- and catalase-like characteristics, which not only generate cytotoxic hydroxyl radicals (•OH) for CDT but also produce O2 in situ and relieve tumor hypoxia for enhanced PDT. Furthermore, upon 808 nm laser irradiation, Pd1.7Bi@CeO2 and indocyanine green (ICG) coordinately prompt favorable photothermia, resulting in thermodynamically amplified catalytic activities. Meanwhile, PBCI is a contrast agent for near-infrared fluorescence imaging to determine the optimal laser therapeutic window in vivo. Consequently, effective tumor elimination was realized through the above-combined functions. The as-synthesized unitary PBCI theranostic nanoplatform represents a potential one-size-fits-all approach in multimodal synergistic therapy of hypoxic tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Terapia Fototérmica , Neoplasias/tratamento farmacológico , Terapia Combinada , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
16.
J Fungi (Basel) ; 9(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108939

RESUMO

Agaricus bitorquis, an emerging wild mushroom with remarkable biological activities and a distinctive oversized mushroom shape, has gained increasing attention in recent years. Despite its status as an important resource of wild edible fungi, knowledge about this mushroom is still limited. In this study, we used the Illumina NovaSeq and Nanopore PromethION platforms to sequence, de novo assemble, and annotate the whole genome and mitochondrial genome (mitogenome) of the A. bitorquis strain BH01 isolated from Bosten Lake, Xinjiang Province, China. Using the genome-based biological information, we identified candidate genes associated with mating type and carbohydrate-active enzymes in A. bitorquis. Cluster analysis based on P450 of basidiomycetes revealed the types of P450 members of A. bitorquis. Comparative genomic, mitogenomic, and phylogenetic analyses were also performed, revealing interspecific differences and evolutionary features of A. bitorquis and A. bisporus. In addition, the molecular network of metabolites was investigated, highlighting differences in the chemical composition and content of the fruiting bodies of A. bitorquis and A. bisporus. The genome sequencing provides a comprehensive understanding and knowledge of A. bitorquis and the genus Agaricus mushrooms. This work provides valuable insights into the potential for artificial cultivation and molecular breeding of A. bitorquis, which will facilitate the development of A. bitorquis in the field of edible mushrooms and functional food manufacture.

17.
Front Public Health ; 11: 1064731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908401

RESUMO

Background: Suicide is the fourth leading cause of death for adolescents, and globally, over 75% of completed suicides occur in low- and middle-income countries (LMICs). Bullying has been proven to be closely related to suicide attempts. However, further understanding of the mechanisms underlying the relationship between bullying and adolescents' suicide attempts is urgently needed. Methods: We used data from the Global School-based Student Health Survey (GSHS) (2010-2017) from 41 LMICs or regions. This study was based on questions assessing bullying victimization, suicide attempts, sleep deprivation, and body mass. Chi-square tests were used to explore the correlations among the main variables. The mediating role of sleep deprivation and the moderating role of body mass index (BMI) were analyzed using PROCESS. Results: The results showed a positive association between bullying victimization and suicide attempts. Sleep deprivation partially mediated the relationship between the frequency of being bullied and suicide attempts. In addition, sleep deprivation played a full or partial mediating role in the relationship between different types of bullying and suicide attempts. BMI moderated the relationships between the frequency of being bullied and suicide attempts, between being made fun of about one's body and sleep deprivation, and between sleep deprivation and suicide attempts. Conclusion: Being bullied has a positive effect on suicide attempts, which is mediated by sleep deprivation and moderated by body mass. The results of this study are consistent with the stress-diathesis model of suicide, suggesting that being bullied is one of the stressors of suicide in adolescents, while sleep deprivation and body mass are susceptibility diatheses of suicide. The results are conducive to identifying adolescents at a high risk of suicide, suggesting that there is a need to pay more attention to bullied adolescents, especially their sleep quality and body mass, and design effective intervention measures to improve the current situation of adolescent suicide in LMICs.


Assuntos
Bullying , Vítimas de Crime , Humanos , Adolescente , Tentativa de Suicídio , Países em Desenvolvimento , Privação do Sono
18.
Adv Healthc Mater ; 12(17): e2203011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36841552

RESUMO

Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.


Assuntos
NADPH Oxidases , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicosaminoglicanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
19.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706095

RESUMO

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas , Humanos , Morte Celular , Linhagem Celular Tumoral , Ferro/administração & dosagem , Ferro/uso terapêutico , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Feminino , Raios Infravermelhos/uso terapêutico , Terapia Fototérmica/métodos , Sulfetos/administração & dosagem , Sulfetos/uso terapêutico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação
20.
J Org Chem ; 88(4): 2393-2403, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36715636

RESUMO

A novel and convenient K2S2O8-mediated diiodo cyclization of 1,6-enynes for the facile synthesis of functionalized γ-lactam derivatives has been developed. This reaction features mild and transition-metal-free conditions, which offer a green and efficient entry to synthetically important γ-lactam scaffolds. Mechanistic studies suggest that iodide radicals initiate the cascade cyclic transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...